Generalized Fibonacci numbers and extreme value laws for the Rényi map

نویسندگان

چکیده

In this paper we prove an extreme value law for a stochastic process obtained by iterating the Rényi map x ↦ β ( mod 1 ) , where assume that > is integer. Haiman (2018) derived recursion formula Lebesgue measure of threshold exceedance sets. We show how related to rescaled version k -generalized Fibonacci sequence. For latter sequence derive Binet which leads closed-form expression distribution partial maxima process. The proof completed deriving sharp bounds dominant root characteristic polynomial associated with

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Restricted Permutations, Fibonacci Numbers, and k-generalized Fibonacci Numbers

In 1985 Simion and Schmidt showed that the number of permutations in Sn which avoid 132, 213, and 123 is equal to the Fibonacci number Fn+1. We use generating function and bijective techniques to give other sets of pattern-avoiding permutations which can be enumerated in terms of Fibonacci or k-generalized Fibonacci numbers.

متن کامل

GENERALIZED q - FIBONACCI NUMBERS

We introduce two sets of permutations of {1, 2, . . . , n} whose cardinalities are generalized Fibonacci numbers. Then we introduce the generalized q-Fibonacci polynomials and the generalized q-Fibonacci numbers (of first and second kind) by means of the major index statistic on the introduced sets of permutations.

متن کامل

Generalized (k, r)–Fibonacci Numbers

In this paper, and from the definition of a distance between numbers by a recurrence relation, new kinds of k–Fibonacci numbers are obtained. But these sequences differ among themselves not only by the value of the natural number k but also according to the value of a new parameter r involved in the definition of this distance. Finally, various properties of these numbers are studied.

متن کامل

Extreme Value Laws for Superstatistics

We study the extreme value distribution of stochastic processes modeled by superstatistics. Classical extreme value theory asserts that (under mild asymptotic independence assumptions) only three possible limit distributions are possible, namely: Gumbel, Fréchet and Weibull distribution. On the other hand, superstatistics contains three important universality classes, namely χ-superstatistics, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Indagationes Mathematicae

سال: 2021

ISSN: ['0019-3577', '1872-6100']

DOI: https://doi.org/10.1016/j.indag.2021.03.002